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ABSTRACT

Convective transition statistics, which describe the relation between column-integrated water vapor

(CWV) and precipitation, are compiled over tropical oceans using satellite and ARM site measurements to

quantify the temperature and resolution dependence of the precipitation–CWV relation at fast time scales

relevant to convection. At these time scales, and for precipitation especially, uncertainties associated with

observational systems must be addressed by examining features with a variety of instrumentation and

identifying robust behaviors versus instrument sensitivity at high rain rates. Here the sharp pickup in pre-

cipitation as CWV exceeds a certain critical threshold is found to be insensitive to spatial resolution, with

convective onset occurring at higher CWV but at lower column relative humidity as bulk tropospheric

temperature increases. Mean tropospheric temperature profiles conditioned on precipitation show vertically

coherent structure across a wide range of temperature, reaffirming the use of a bulk temperature measure in

defining the convective transition statistics. The joint probability distribution of CWV and precipitation

develops a peak probability at low precipitation for CWVabove critical, with rapidly decreasing probability of

high precipitation below and near critical, and exhibits systematic changes under spatial averaging. The

precipitation pickupwith CWV is reasonably insensitive to time averaging up to several hours but is smoothed

at daily time scales. This work demonstrates that CWV relative to critical serves as an effective predictor of

precipitation with only minor geographic variations in the tropics, quantifies precipitation-related statistics

subject to different spatial–temporal resolution, and provides a baseline for model comparison to apply these

statistics as observational constraints on precipitation processes.

1. Introduction

Despite the ongoing improvement of weather and

climate modeling in recent decades in terms of model

resolution and number of simulated processes, convective

parameterization remains a major contributor to the

uncertainty of future projection (Sanderson 2011; Rowell

2012; Yokohata et al. 2012; Sherwood et al. 2014), and

systematic biases in precipitation and clouds persist. A

nonexhaustive list of persistent biases includes the double

ITCZ bias (Mapes and Neale 2011; Hirota et al. 2014),

insensitivity of precipitation to environment humidity

(Oueslati and Bellon 2013), low bias in tropospheric hu-

midity (Gonzalez and Jiang 2017), failing to capture the

amplitude and propagation of MJO (Kim et al. 2014;

Jiang et al. 2016; Jiang 2017), unrealistic statistics and

surface storm tracks for tropical cyclones (Booth et al.

2017), and incorrect precipitation diurnal cycle over land

(Covey et al. 2016). These biases also impact model di-

agnosis for short-term forecasting purposes, since models

adopted for weather forecasting or reanalysis share com-

mon components with climate models.

Many conventional diagnostics for climate models

emphasize comparisons against long-term climatology

or variability at different time scales, and the model

performance examined by these metrics is affected by

multiple factors. While sensitivity experiments with re-

spect to such metrics are useful in identifying important

processes (Benedict et al. 2013, 2014; Boyle et al. 2015;

Bernstein and Neelin 2016; Langenbrunner and Neelin

2017), the contribution of certain processes can be diffi-

cult to isolate, making constraining model performance

challenging. As such, there is an emerging need for

diagnostics targeting processes and focusing on the

most relevant time scales. This study presents an example

of such process-oriented diagnostics—the convective
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transition statistics—that focus on the fast-time-scale

deep convection in the tropics.

The sensitivity of moist convection to lower-free-

tropospheric humidity had been suggested by the anal-

ysis of TOGA COARE and operational sounding data

for the tropical western Pacific (Brown and Zhang 1997;

Sherwood and Wahrlich 1999; Parsons et al. 2000) and

was subsequently affirmed by numerical experiments

(Tompkins 2001; Redelsperger et al. 2002; Ridout 2002;

Derbyshire et al. 2004). Later observational and mod-

eling studies pointed to the importance of organized

convective systems in determining the environment

moisture field (Tao and Moncrieff 2009; Yano et al.

2012; Moncrieff et al. 2017). Bretherton et al. (2004)

documented an empirical relationship between the col-

umn relative humidity (CRH) and precipitation over

tropical oceans at daily and monthly time scales in SSM/I

satellite retrievals (see alsoRushley et al. 2018). Based on

the analysis of the same satellite observations at fast time

scales, Peters and Neelin (2006) noted a sharp increase

in precipitation as the column-integrated water vapor

(CWV) exceeded a certain threshold and, using the

analogy to associated behavior in continuous phase

transitions, showed consistent relations among a set of

statistics, including probability and variance of pre-

cipitation, and the distribution of CWV for precipitating

events. Subsequent studies have examined the de-

pendence on tropospheric temperature (Neelin et al.

2009) and how the statistics can be reproduced by simple

stochastic models (Stechmann and Neelin 2011, 2014).

The plume buoyancy calculations based on ground-

based measurements at tropical ARM sites (Holloway

and Neelin 2009; Schiro et al. 2016) and the NCAR

CAM5 simulations (Sahany et al. 2012; Kuo et al. 2017)

have demonstrated that entrainment is instrumental in

explaining the observed precipitation–CWV relation

and that the relation is qualitatively robust over land and

ocean. These convective transition statistics character-

ize the dependence of tropical convection on bulk

measures of the water vapor–temperature environment.

The robust rapid increase in conditionally averaged

precipitation and conditional probability of pre-

cipitation as CWV exceeds a certain threshold (the

‘‘pickup of precipitation’’) derived from the tropical

ARM sites have been used to constrain the en-

trainment parameter in the NCARCESM (Kuo et al.

2017). Given that precipitation-related statistics are

sensitive to resolution (Chen and Dai 2018; Klingaman

et al. 2017), to allow for a more quantitative comparison

to model output subject to varying spatial resolution and

temporal frequency, the dependence of the convective

transition statistics on spatial–temporal resolution must be

quantified. Moreover, the robustness to instrumentation,

especially at high rain rate, should be addressed to ensure

the reliability of suchdiagnostics. Thepurposes of this study

are to quantify the resolution dependence and robustness

of the statistics, to provide an observational baseline for

model comparison, and to expand the set of related prop-

erties that can be understood within this framework.

This manuscript is organized as follows. Section 2

describes the datasets analyzed here. The basic con-

vective transition statistics, which build on those in-

troduced in previous work (e.g., Peters and Neelin 2006;

Neelin et al. 2008), are presented in section 3 with the

following additions: using newer datasets, assessing the

spatial resolution dependence of the statistics, testing

the robustness to instrumentation, and evaluating sensi-

tivity to the choice of bulk measure of tropospheric tem-

perature. Sections 4–6 explore new statistics characterizing

the convective transition. Section 4 examines the geo-

graphic variations, or the lack thereof, of the effectiveness

of CWV relative to critical as a predictor of precipitation

and the associated dependences on spatial–temporal res-

olution. The sensitivity of the statistics to time averaging is

discussed in section 5. The joint probability density func-

tion (PDF) of CWV and precipitation, and its dependence

on spatial resolution and instrumentation, are shown in

section 6. Finally, section 7 summarizes the properties of

convective transition statistics and briefly discusses their

potential as diagnostic tools.

2. Datasets

Compiling the convective transition statistics requires

CWV, precipitation rate P, column-integrated saturation

humidity cqsat {[
Ð
qsat[T(p), p] dp/g; here qsat[T(p), p] is

the saturation specific humidity with respect to liquid

water as a function of temperature T(p) and pressure p},

and mass-weighted column-averaged temperature T̂.

The primary source of CWV and P here is the TRMM

Microwave Imager (TMI) retrieval products processed

by Remote Sensing Systems (RSS; algorithm v7.1,

TMIv7.1 hereafter; Wentz et al. 2015). The retrieved

values include gridded (0.258 3 0.258) snapshots of CWV

(0.3mm) and P (0.1mmh21) over ocean, with no data

available over land. The TRMM Precipitation Radar

(PR) 2A25 (v7; TRMM 2011a) and TRMM 3B42 (v7;

TRMM 2011b) Rainfall Rate products are used for

comparison. The 2A25 data provide snapshots of P with

resolution ;5 km 3 5km, and 3B42 provides gridded

(0.258 3 0.258) P every 3 h. Note that 3B42 is a merged

product; as such, most values should be interpreted as

instantaneous, since P is observed during a specific 3-h

window rather than a computed 3-hourly mean. Here,

the TMIv7.1, 2A25, and 3B42 data for 1 June 2002–

31 May 2014 are used.
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The Microwave Radiometer (MWR) CWV and rain

gauge P measurements collected from the DOE ARM

sites at Nauru (08310S, 1668540E) for 1999–2008 (Gaustad

and Riihimaki 1998; Holdridge and Kyrouac 1998) and

at Manus (2830S, 1478250E) for 1998–2010 (Gaustad and

Riihimaki 1996; Holdridge and Kyrouac 1997) in the

tropical western Pacific (both with optical rain gauge)

and at the ARM Mobile Facility near Manaus (3870S,
60810W) for 10 January 2014–20 October 2015 (Koontz

et al. 2015; Gaustad and Riihimaki 2015) during the

Green Ocean Amazon (GOAmazon) campaign (with

acoustic rain gauge) are also used to study the sensitivity

of the statistics to instrumentation and time averaging.

For column-integrated/averaged cqsat and T̂, with the

column being defined as 1000–200hPa, the 6-hourly 2.58
NCEP–DOE Reanalysis-2 (Kanamitsu et al. 2002) tem-

perature is adopted with necessary interpolation. Since the

spatial and temporal autocorrelation scales of temperature

are expected to be large in the tropics, the interpolation is

justified. To avoid potentially erroneous temperature

values from spatial interpolation (e.g., around the Andes

and New Guinea), data in the 2.58 neighborhood of land

pixels are excluded for some of the presented statistics.

Note that the CWVdatasets often do not record aCWV

value in the presence of precipitation, and thus gap filling is

required to reconstruct missing data (see section S1 in the

supplementary material). For algorithm choices used for

the TMIv7.1 data, the probability of missing CWV de-

pends primarily on P, with the probability increasing from

0 to 1 almost linearly as P increases from 2 to 9mmh21.

This even affects the tropical-mean precipitation; for ex-

ample, the annual-mean precipitation over tropical oceans

(208S–208N) is reduced from 3.1 to 2.1mmday21 by

excluding precipitation without valid CWV retrievals.

Therefore, it is necessary to gap-fill these missing CWV

values; otherwise, the information comprising the desired

statistics would be systematically distorted. Here the de-

fault is to simply fill the missing values using the available

CWV value at the geographically nearest pixel. The

sensitivity of the presented statistics to the gap filling

are included in section S4 of the supplemental material

(Figs. S7–S11). Similarly, the raw CWV time series from

the tropical ARM siteMWRmeasurements are recorded

every 20 s, but exhibit gaps because of the ‘‘wet window’’

effect. Gaps shorter than 6h are filled using linear in-

terpolation as described in Schiro et al. (2016). The gap-

filled time series are then used to calculate the mean time

series at lower temporal frequencies (e.g., 5-min or hourly

average). Precipitation observations are available in the

CWV gaps and do not have to be interpolated.

Additionally, satellite CWV retrievals processed byRSS

(including TMIv7.1) have a 75-mm cap set by the algo-

rithm. While CWV rarely exceeds 75mm, operational

soundings occasionally record such events; for example,

weather stations in Ishigakijima (248200N, 1248100E; station
47918) and Taipei (258020N, 1218310E; station 58968) re-

corded 80.03 and 82.54mm at 0000 and 1200UTC, re-

spectively, on 21 August 2013 under the influence of

Typhoon Trami (data fromUniversity of Wyoming 2017).

This serves as a reminder of the imperfect observational

systems, and onemust keep inmind the uncertaintieswhen

applying the presented statistics for model diagnosis.

3. Dependence of precipitation–CWV relation on
tropospheric temperature and spatial resolution

a. Basic features of convective transition statistics

Figure 1 shows the basic convective transition statis-

tics, including the precipitation rate (Fig. 1a), probabil-

ity of precipitation (Fig. 1b; P . 1.05mmh21), PDFs of

all events (Fig. 1c), and precipitating events (Fig. 1d)

conditioned on CWV and cqsat for the tropical western

Pacific, along with results for other tropical ocean basins

(Figs. 1e–p). Here the statistics are compiled at 0.258
(colored markers) and 0.58 (dots), using cqsat as the bulk

tropospheric temperature. The standard errors associated

with the conditionally averaged precipitation (condi-

tional precipitation hereinafter) at 0.258 are smaller than

the marker size, because of the large number of counts in

each bin (on the order of 103–105), and thus are omitted.

To exclude light precipitation and focus on deep con-

vective events, a threshold of 1.05mmh21 defining pre-

cipitating events is chosen, with a natural offset 0.05 since

the TMIv7.1 precipitation is discretized by 0.1mmh21

units. Note that the PDFs of all events (e.g., Fig. 1c)—that

is, PDFs of CWV—are calculated from the joint PDF of

CWV and cqsat, normalized for each basin, by treating

CWV as a continuous variable and cqsat discretely. These

PDFs, when multiplied by the corresponding conditional

probabilities (Fig. 1b), give the PDFs for precipitating

events (Fig. 1d). The jumps at 75mm for the PDFs result

from the CWV cap set by the retrieval algorithm. For

sensitivity to gap filling, see section S4 (Figs. S7–S11).

For each cqsat, the conditional precipitation and prob-

ability (Fig. 1; first and second columns) pick up sharply

as CWV exceeds a certain threshold, referred to as the

‘‘critical CWV’’ or wc (defined in section 3b), around

which the PDF of precipitating events (fourth column)

peaks. The precipitation pickup occurs at higher CWV

for higher cqsat, that is, wc is increasing with cqsat. The

conditional probability would decrease with an increase

in the threshold that defines precipitating events; that is,

the probability curves would move toward higher CWV.

The spacing between pickup curves (for conditional

precipitation and probability) suggests that the behavior

for cqsat bins $61mm (.85% of total occurrence over
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tropical oceans) is slightly different from that in lower cqsat

bins. Inspection of the geographical distribution of cqsat

occurrence suggests that low-cqsat events are duemostly to

systems originating from the extratropics (section S6).

The observed sharp increase in precipitation as CWV

exceeds critical has been explained by entraining plume

calculations, through which the deep convective condi-

tional instability can be estimated. As previously demon-

strated (Holloway and Neelin 2009; Schiro et al. 2016; Kuo

et al. 2017), CWV serves as a measure of the impact of

environment moisture on plume buoyancy, and hence the

instability, through the effects ofmixing, as indicated by the

precipitation pickup. The dependence of wc on cqsat can be

explained through a similar approach (Sahany et al. 2012).

In Fig. 1, the dots (0.58) match the colored markers

(0.258) in the first and third columns; that is, the conditional

precipitation and PDF of CWV are insensitive to spatial

resolution, with small but noticeable decreases in the PDF

at highest CWV (above critical). This insensitivity is

consistent with the assertion that the autocorrelation

spatial scales of CWV and tropospheric temperature

are much greater than that of precipitation. Nonetheless,

to what extent this holds depends on the gap filling

(Figs. S9–S11 in section S4). It is also consistent with

Yano et al. (2012), which used a cloud-resolving model

(CRM) and demonstrated that the conditional pre-

cipitation as a function of CWV is quantitatively robust to

spatial resolution (up to ;18).
The conditional probability defined by a fixed nonzero

threshold (1.05mmh21; Fig. 1, second column) slightly shifts

toward lower CWV with spatial coarse graining, consistent

with the greater chances of observing precipitation over a

FIG. 1. (a) Conditionally averaged precipitation rate, (b) conditional probability of precipitation, (c) probability density function of all events,

and (d) precipitating events only as a function of CWV and cqsat (mm) for the tropical (208S–208N) western Pacific. (e)–(p) As in (a)–(d), but for

the (e)–(h) tropical eastern Pacific, (i)–(l) Atlantic, and (m)–(p) Indian Ocean. Results are shown using TMIv7.1 data and Reanalysis-2 tem-

perature compiled at 0.258 (coloredmarkers) and 0.58 (dots).Underpopulated bins at 0.258 (PDF, 1025) are indicated by open circles, and those

for 0.58 are omitted. Triangles represent the corresponding cqsat values.Here, precipitating events are defined byP. 1.05mmh21. TheCWVdata

is gap-filled using nearest available values, anddata frompixelswithin 2.58 of land are excluded to avoid potentially erroneous temperature values

arising from spatial interpolation. The standard errors associated with the conditional precipitation are smaller than the marker size and are

omitted. The corresponding statistics compiled using T̂ as the bulk tropospheric temperature measure are plotted in Fig. S4.
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larger area. However, with a much higher threshold

(e.g., 15mmh21, the practical maximum for TMIv7.1

precipitation in the tropics) or at even lower resolution

(e.g., 28), the dependence on spatial resolution may re-

verse for the rarer chances of seeing extreme rainfall

over a larger area. These dependences indicate the un-

derlying joint PDF of CWV and P being resolution sen-

sitive, as will be discussed in section 6.

b. Critical CWV and collapsed statistics

As described earlier, CWV measures the impact of

environment moisture on conditional instability, and

hence precipitation. For those cqsat bins most relevant in

the tropics ($61mm), the pickup curves in Fig. 1 suggest

the possibility of collapsing statistics by shifting CWVby

wc for each cqsat, that is, the precipitation–CWV relation

can be simplified by taking into account the dependence

ofwc on temperature. To definewc as a function of cqsat, it

makes sense to do so based on conditional precipitation

alone, for it, unlike the conditional probability, does not

rely on any threshold and is insensitive to spatial resolu-

tion. This assumes that the conditional precipitation has

the form of f(CWV 2 wc), with its cqsat dependence im-

plicitly built in through wc(cqsat). See section S3 regarding

details on finding wc given the statistics as in Fig. 1.

Figures 2a–d show the collapsed version of the original

statistics for the tropical western Pacific in Figs. 1a–d (other

basins in Fig. S6). As in Fig. 2a, wc is defined as the CWV

value atwhich thebest fit for conditional precipitation (gray

line) intersects with the CWV axis. For cqsat bins $70mm,

the conditional precipitation, probability of precipitation

(Fig. 2b), and PDFof precipitating events (Fig. 2d) collapse

perfectly. For these cqsat bins, there are below-critical pre-

cipitating events, many of which are weakly precipitating

and excluded because of the 1.05mmh21 threshold adop-

ted here, and are likely associated with the mature and

decaying phases of convection (not shown). As cqsat in-

creases, cqsat 2 wc (triangles) increases, indicating critical

deviates from column saturation. For lower cqsat # 61mm,

both conditional precipitation and probability have slightly

higher (lower) values for CWV right below (above) critical,

with some underpopulated CWV bins (open circles) ex-

ceeding the corresponding column saturation (triangles),

indicating minor inconsistency between the retrieval and

reanalysis datasets. Furthermore, there is more below-

critical precipitation as cqsat decreases (Fig. 2d; even more

when a smaller precipitation threshold is adopted), consis-

tent with cold events originating from the extratropics and

exhibiting characteristics different from deep convection in

the tropics.

The PDF of CWV in Fig. 2c also collapses around and

above critical, with the PDF of nonprecipitating events

(including those with P, 1.05mmh21) varying with cqsat

and basin. For CWV slightly lower than critical, the PDF

of CWV starts to drop rapidly, and the PDF for pre-

cipitating events peaks. As demonstrated in simple

stochastic models (Stechmann and Neelin 2011, 2014),

moisture accumulates by surface evaporation and

moisture convergence until CWV reaches critical, at

which point precipitation becomes an effective sink,

leading to the drop in the PDF for CWV above critical.

Note that the PDF for all events has another peak at

lower CWV because of the balance between surface

evaporation and moisture divergence.

FIG. 2. (a)–(d) Convective transition statistics for the tropical western Pacific as in Figs. 1a–d for 0.258 (coloredmarkers) and 0.58 (dots),
but for each marker/dot shifted by the corresponding critical CWV (wc) from Fig. 3c, and with PDFs scaled. The best fit for conditional

precipitation is shown as a gray line in (a), with its slope indicated by a. (e)–(h) As in (a)–(d), but using T̂ instead of cqsat as the bulk

tropospheric temperature measure. The colored triangles represent average cqsat conditioned on T̂ and CRH ([CWV/cqsat). 60%, shifted

by wc. The corresponding plots for the other basins are in Figs. S5 and S6.
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Earlier studies (Neelin et al. 2009; Sahany et al.

2014) have suggested scaling instead of shifting by

wc, that is, considering the form f(CWV/wc) instead

of the shift f(CWV 2 wc), to collapse the statistics.

Both are similar to leading order for small differences in

wc, but to second order have slightly different effects.

Scaling preserves the zero CWV value, which can be

important when examining PDFs across the entire CWV

range, while shifting is preferred here because effects

near critical seem to be affected by factors that do not

scale with wc. The two approaches may lead to different

interpretations for warming climate, where some of the

simplest arguments tend to rescale moisture by satura-

tion [see Camargo et al. (2014) for a discussion sur-

rounding saturation deficit versus relative humidity in

projecting future tropical cyclone genesis frequency].

c. Dependence of critical on temperature

The collapsed conditional precipitation and proba-

bility of precipitation for the tropical western Pacific at

0.258 in Figs. 2a and 2b are duplicated in Figs. 3a and 3b,

along with the critical CWVwc(cqsat) (Fig. 3c) and critical

CRH wc(cqsat)/cqsat (Fig. 3d). Results for other basins are

also shown. Here, we focus on the results derived using

TMIv7.1CWV and precipitation.

In Figs. 3a–d, the precipitation pickup and the de-

pendence of wc on cqsat are constant across basins, with

slightly lower wc for the tropical Atlantic. As noted

earlier, a clear transition occurs around cqsat 5 61mm in

Figs. 3c and 3d. For lower cqsat, the precipitation pickup is

less well defined and scatters more, and so do the cor-

responding critical values, with approximately constant

critical CRH. Above the transition cqsat, the critical

values deviate from saturation as cqsat increases, that is,

deep convective onset occurs at higher CWV but at

lower CRH with increasing tropospheric temperature,

as shown in Neelin et al. (2009). The critical CRH de-

creasing with cqsat is expected to be robust as long as wc

is defined through collapsing statistics, for other rea-

sonable definitions of critical [e.g., assuming the func-

tional form of log[11 ea(CWV2wc)] for the conditional

precipitation] would only introduce a cqsat-independent

FIG. 3. (a) Collapsed conditional precipitation, (b) probability of precipitation, and (c) critical CWVwc and (d) critical CRH ([wc/cqsat)

for tropical oceans using cqsat as the bulk tropospheric temperature measure. (e)–(h) As in (a)–(d), but using T̂ instead of cqsat as the bulk

temperature. The conditional precipitation [(a), (e)] and probability of precipitation [(b), (f); P . 1.05mmh21] are compiled for three

combinations of datasets: (i) TMIv7.1 CWV and precipitation (colored dots) with underpopulated bins plotted as open circles, (ii)

TMIv7.1 CWV and PR 2A25 precipitation (gray dots) excluding underpopulated bins, and (iii) ARM site CWV and precipitation

measurements from Manus (diamonds) and Nauru (squares) Islands in the tropical western Pacific (WPac). Reanalysis-2 temperature is

used for (i)–(iii). For (i) and (ii), bins from all four basins are plotted, with data at 0.258 resolution and coastal regions excluded. For (iii),

the CWV values are shifted by the corresponding wc given the temperature (cqsat or T̂) time series according the wc–temperature relation

forWPac [as in (c) and (g)]. The critical CWV [(c), (g)] and critical CRH [(d), (h)] are calculated for combinations (i) and (ii), respectively.

The colored solid lines in (c) and (g) represent cqsat conditioned on temperature andCRH ([CWV/cqsat). 60%. This conditional cqsat is also

used in defining the critical CRH. The gray lines in (c) represent CRH from 100% to 80% with 2% spacing.
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offset of wc, preserving the slope of the wc–cqsat relation

that, when comparedwith the constant CRH (gray) lines

in Fig. 3c, indicates decreasing critical CRH with cqsat.

The transition from approximately constant to de-

creasing critical CRH with increasing cqsat marks the dif-

ferent precipitation regimes, that is, convection dominant

in the tropics versus large-scale saturation driven in the

extratropics.

d. Robustness to instrumentation

Before the convective transition statistics can be used

for model diagnostics, their robustness and sensitivity to

instrumentation must be quantified. Figures 3a–d include

the results derived using multiple datasets, including (i)

TMIv7.1CWV and precipitation, (ii) TMIv7.1CWV and

PR 2A25 precipitation, and (iii) ground-based measure-

ments from Manus and Nauru ARM sites in the tropical

western Pacific.

The statistics in Figs. 3a–d are robust to TMIv7.1

versus PR precipitation, with slightly more scatter for

the conditional probability. Combining TMIv7.1CWV

and 3B42 precipitation results in quantitatively similar

statistics except for a slightly smaller slope a of the best

fit for conditional precipitation (not shown).

In Fig. 3a, the conditional precipitation from Manus

and Nauru ground-based measurements, collapsed

using wc(dqsat) for the tropical western Pacific (WPac;

TMIv7.1 CWV 1 precipitation), are quantitatively

consistent with those from satellite retrievals, with

significant low bias at highest CWV (relative to crit-

ical; CWV 2 wc . 5mm); the corresponding condi-

tional probability in Fig. 3b is uniformly lower

than satellite retrievals because of the difference in

spatial resolution, with the similar low bias. Combining

the ground-based CWV time series and 3B42 pre-

cipitation aroundManus and Nauru shows the same bias

at high CWV, indicating that the cause is due to the

ground-based MWR CWV measurements (section S8).

These have a wet-window problem, that is, high CWV

events associated with strong precipitation are missing

in the raw CWV time series, and gap filling can only

partially compensate for this.

Although not the focus here, conditional precipitation

and probability at the Manaus GOAmazon site (over

land) exhibits quantitative differences from those over

oceans as in Fig. 3, despite the qualitative similarities we

shall discuss in section 5.

The quantitative agreement among datasets exam-

ined here boosts our confidence in the reliability of the

convective transition statistics as model diagnostic tools.

Meanwhile, given that the same TMIv7.1CWV and

Reanalysis-2 temperature are used for compiling the

statistics, we advise caution that the robustness of the

statistics to TMIv7.1 versus PR precipitationmay simply

reflect the efforts of calibration among datasets. As in-

dicated by the minor difference in the collapsed condi-

tional probabilities in Fig. 3b, and as we shall see in

section 6, the two precipitation datasets do lead to

quantitative differences in the distribution of pre-

cipitation, especially at high rain rate.

e. Robustness to bulk measure of temperature

Thus far, cqsat appears to be a useful bulk measure of

tropospheric temperature. As noted above, the critical

value is not governed by cqsat in a simple way, with critical

CWV increasing and critical CRH decreasing with cqsat.

Figure 4 shows the temperature profile, conditioned

on precipitation and cqsat, relative to the mean profile

(referred to as a perturbation). The perturbed profile

evolves coherently in the vertical as a function of cqsat,

explaining the usefulness of a bulk temperaturemeasure

such as cqsat, or the mass-weighted column-averaged

temperature T̂ adopted in previous studies (e.g.,

Holloway and Neelin 2007; Sahany et al. 2012). The

profiles are similar across basins, except for the high-

and low-cqsat bins in the tropical Indian Ocean showing

greater (smaller) anomaly in the lower (upper) tropo-

sphere. This is likely a consequence of the circulation

pattern driven by the local land–ocean contrast, since

both the warmest and coldest events in this domain tend

FIG. 4. Reanalysis-2 temperature profiles conditionally averaged on TMIv7.1 precipitation and cqsat. Profiles are anomalies with respect to

the mean profile averaged over all precipitating events (P . 0.25mmh21) with coastal regions excluded.
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to occur near the South Asian continent in the Bay of

Bengal and Arabian Sea (Fig. S13). The resulting sta-

tistics in Figs. 1–3, nevertheless, do not reflect this

difference in temperature structure. Replacing the con-

dition on precipitation by CWV above critical, or re-

placing cqsat by T̂, leads to similar profiles. For cqsat higher

than the most probable bin, the corresponding overall

(perturbed 1 mean) temperature profiles are insensitive

to conditions on precipitation or CWV, suggesting that

high-cqsat events result fromprevious or nearby convective

activity, consistent with convection being the major

heating mechanism in the tropical troposphere.

The two bulk measures cqsat and T̂, both of which

have similar properties in characterizing convection, are

well correlated because of the vertical coherence

of temperature (section S2). It is nonetheless worth

quantifying in detail their similarity as bulk temperature

measures for the statistics because of the nonlinear de-

pendence of precipitation statistics on the thermody-

namic variables. The bottom panels of Figs. 2 and 3 show

the similar statistics corresponding to their top-panel

counterparts, but use T̂ instead as the bulk measure

(other basins in Fig. S5). From these two figures,

substituting one bulk measure by another only leads to

minor quantitative differences, for example, a slightly

smaller slope a for conditional precipitation (Fig. 2a vs

Fig. 2e), and slightly more precipitating events for CWV

right below critical for cold bins when cqsat is used (Fig. 2d

vs Fig. 2h). This insensitivity to the bulk measure of

temperature also holds for statistics presented in

Figs. 5 and 7–9 below. Note that the vertically coher-

ent temperature structure in the presence of convection

FIG. 5. (a) The probability of precipitation as a function of geographical location, calculated

using TMIv7.1 precipitation at 0.258 resolution. (b) The conditional probability of precipitation
given CWV exceeding critical, calculated using TMIv7.1 CWV and precipitation, and Re-

analysis-2 temperature at 0.258. Here the conditional probability is calculated from the fre-

quency binned by CWV2wc(cqsat), P, and geographical location, with wc(cqsat) as in Fig. 3c

averaged over four basins. (c) As in (b), but at 18. (d) As in (b), but with P defined as the

maximum of the TMIv7.1 precipitation rate and two additional 3B42 precipitation rates that

are closest in time to the TMIv7.1 measurement. (e) The fraction of total precipitation from

events with CWV exceeding critical, calculated using data as in (b) at 0.258. (f) Precipitation
rate (for P$ 0.25mmh21) on top of regions of CWV exceeding critical using TMIv7.1 data at

18 for ascending orbits on 1 Jan 2004. Note that (f) is a realization of the conditional probability

in (c) on a particular day. For (a)–(e), the precipitation threshold 0.25mmh21 is chosen for

comparison across spatial resolution, and CWV offset 21.5mm to include more events. The

magnitudes of probabilities/fraction in these panels depend on the precipitation threshold and

CWV offset, while the corresponding geographic patterns appear to be robust.
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guarantees that layered bulk measures (e.g., 850–500-hPa

integrated saturation humidity) can also be useful and

would lead to similar statistics (e.g., Figs. 1 and 3 in Neelin

et al. 2009), except for the PDF of all events for CWV

significantly lower than critical, which could differ quali-

tatively (not shown).

4. Geographical dependence of precipitation
pickup

The statistics in Figs. 2 and 3 demonstrate that CWV

above critical is a practical estimator of conditional in-

stability, and hence precipitation, with the temperature

dependence characterized by the wc–temperature

relation [wc(cqsat) or wc(T̂)]. These relations seem

to be universal across ocean basins, at basin scales.

However, other factors contributing to conditional

instability—vertical degrees of freedom of temperature

and moisture structure not captured by the bulk mea-

sures used here, large-scale convergence/divergence,

radiative forcing associated with existing clouds or the

lack thereof, and triggering of convection because of

cold pool expansion from organized systems or land–sea

breeze in coastal regions—may vary geographically,

causing geographic variations at regional scales (e.g.,

Torri et al. 2015; Bergemann and Jakob 2016; Ahmed

and Schumacher 2017). As such, the effectiveness of

CWV above critical as a predictor of precipitation at

regional scales is examined in this section.

As background for our discussion, Fig. 5a shows the

probability of precipitation (P . 0.25mmh21; details in

caption). The probability of high CWV (relative to criti-

cal; Fig. S14a) is included in section S7. These maps of

probability of precipitation and high CWV reflect the

climatology of precipitation (Fig. S14b), sharply con-

trasting the major convergence zones with regions

elsewhere.

Figure 5b shows the corresponding conditional prob-

ability of precipitation given high CWV, formally de-

fined as

Prob(P. 0:25mmh21jCWV.w
c
2 1:5mm)[

No: of occurences withP. 0:25mmh21 and CWV.w
c
2 1:5mm

No: of occurences with CWV.w
c
2 1:5mm

,

as a function of geographical location. Here the critical

value wc(cqsat) is from Fig. 3c, averaged over four basins

(adopting basin-dependent critical values only in-

troduces small discontinuities in wc, hence the condi-

tional probability across basin boundaries). The most

outstanding feature in Fig. 5b is that the conditional

probability is far smoother than the probability of pre-

cipitation in Fig. 5a. To the extent that there are geo-

graphic variations, the conditional probability scarcely

reflects the features of precipitation climatology. Thus,

including CWV relative to critical and the dependence

of critical on temperature has yielded a probability

measure that is much less dependent on space.

To a first approximation, the CWV value relative to

critical thus provides information that will apply reason-

ably well across a large portion of the tropics. Further-

more, compiling the statistics presented in Fig. 3 inside

and outside regions with high seasonal precipitation

yields quantitatively similar results (not shown; refer to

Fig. 3 since the corresponding collapsed statistics and

critical values are visually indistinguishable), reaffirming

that these statistics focus on the occurrences of convec-

tion at fast time scales rather than long-term climatology.

Minor geographic variations may be noted in Fig. 5b,

for example, the contrast between the lower values

around theMaritime Continent and along the equator in

the eastern Pacific, and the higher values off the equator in

the central to eastern Pacific andAtlantic. The conditional

probability is not defined over dry regions covered by

marine stratocumulus (there are not above-critical events

occurring in these locations); where it is defined, there is

large uncertainty associated with small sample size along

the edges of the dry regions (e.g., along 108S in the eastern

Pacific). The extreme low values in some coastal regions

(;2.58 in width, the resolution of Reanalysis-2 data) could

be due to physical coastal effects (Bergemann and Jakob

2016). However, local decreases in the temperature (Fig. 3

in Kuo et al. 2017) suggest they are more likely due to the

erroneously lower cqsat (and hence wc) and spurious oc-

currence of above-critical events arising from land–ocean

temperature contrasts and spatial interpolation.

Figures 5c and 5d further quantify spatial and temporal

dependence of this conditional probability. Figure 5c

shows the same conditional probability as in Fig. 5b, but

at 18. Coarse graining in space leads to the same spatial

pattern (or the lack thereof) and, with the 0.25mmh21

threshold adopted here, uniformly greater magnitude in

conditional probability, consistent with the dependence

on resolution shown in Figs. 1 and 2. That is, CWV above

critical serves as a precipitation estimator with more

certainty at scales comparable to or larger than the au-

tocorrelation spatial scale of precipitation.
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Figure 5d shows the conditional probability as in

Fig. 5b, but incorporating 3B42 precipitation (details in

caption). Here, including two additional 3B42 precipitation

rate values effectively provides one more independent snap-

shot of precipitation taken in the period of 0–4.5h prior to

or after the TMIv7.1 measurement is acquired. The re-

sulting conditional probability in Fig. 5d therefore quan-

tifies the probability of observing at least one precipitating

event from the two datasets, consecutive in time but ran-

domly separated by up to 4.5h, given that CWV exceeds

critical. Note that here the CWV value relative to critical is

treated as approximately constant because of the long au-

tocorrelation time scales of CWV and temperature.

As expected, the conditional probability in Fig. 5d (at

0.258) is everywhere greater than its counterpart in Fig. 5b,

and a similar map compiled at 28 is uniformly greater than

85% over tropical oceans (not shown). These suggest that,

at scales comparable to the autocorrelation spatial and

temporal scales of CWV, an above-critical event is almost

certainly accompanied by precipitation before decreasing

to below critical. While precipitation has much shorter

autocorrelation time scales, the comparison of Figs. 5b and

5d has ruled out the simplest hypothesis that the two

consecutive-in-time measurements of precipitation can be

treated as independent random events (not shown).

Figure 5e shows the fraction of total precipitation

from above-critical events, which are responsible for

most of the precipitation over tropical oceans (except in

dry regions). It also captures the seasonal shifts of con-

vergence zones, for example, the local maximum along

108S in the Indian Ocean and between 08 and 108S in the

eastern Pacific results from events during the Southern

Hemisphere raining seasons.

Note that Fig. 5e [and the conditional probability

Prob(CWV.wc 2 1:5mm jP. 0:25mmh21); Fig. S14d]

has a geographic pattern similar to Fig. 17 in Tao and

Moncrieff (2009; fraction of precipitation from meso-

scale convective systems) with some coastal exceptions.

This similarity suggests that organized systems are im-

portant contributors to precipitation above critical (see

also Moncrieff et al. 2017). As we have seen in Figs. 1

and 2, the conditional precipitation and PDF of CWV

are robust to spatial resolution (up to ;18); in addition

to the autocorrelation spatial scale of CWV being

greater than that of precipitation, organized systems

could play a role in this robustness.

Finally, Fig. 5f shows an example for ascending orbits

on a particular day, showing the regions where CWV is

close to or above critical, that is, a realization of the

conditional probability in Fig. 5c for those snapshots on

each orbit. Precipitation values exceeding 0.25mmh21

are overlaid. It may be seen that precipitation mainly

occurs in the near- or above-critical regions sporadically,

consistent with the probabilities shown in the earlier

panels. Thus, the estimates of near- or above-critical

CWV–temperature environment may have useful ap-

plications as predictors of precipitation (see also section

S7), making the known association of precipitation with

high CWV (e.g., Mapes et al. 2006) more quantitative.

5. Sensitivity to time averaging

Satellite retrievals provide snapshots of CWV and

precipitation covering basin-scale areas and, unlike

most ground-based data, contain enough events for the

compiled statistics to be stable, that is, insensitive to

noise. However, when these statistics apply to model

diagnostics—given that most current models output at

subdaily frequencies (e.g., 6- or 12-hourly means) and

higher-frequency output (e.g., hourly or time-stepmean/

snapshot) are not standard yet—the validity of the

model versus retrieval comparison must be addressed.

To quantify the dependence on coarse graining in time,

we turn to ground-based measurements that have more

extensive time-domain information.

Figure 6 shows statistics from tropical ARM site

measurements with different time averaging (not con-

ditioned on temperature). At these sites, the temperature

range in terms of T̂ is narrow, with;1–2-K variation, and

hence the overall statistics are dominated by the most

probable temperature bin. The conditional precipitation

(first column) and frequency density for all events (third

column, crosses) are relatively insensitive to time aver-

aging up to 6 h, with Nauru beingmore sensitive than the

other two sites. Conditional probability (second column;

P . 0.5mmh21) increases with time averaging, reflect-

ing the sensitivity of the joint PDF of CWV and pre-

cipitation. There are quantitative differences among

these sites, but there is not a clear qualitative difference

or contrast between oceanic versus continental envi-

ronments regarding the dependence on time averaging.

The sharpness of the pickup tends to be smoothed out by

the averaging, resulting from averaging subdaily in-

stances of high CWV, high precipitation times with

lower values. Overall, however, the results in Fig. 6

suggest that, while instantaneous or hourly data are

desirable for insights into the fast-time-scale behavior,

statistics from 3- or 6-hourly mean data can be used for

model comparisons, extending the applicability of using

these statistics as diagnostic tools.

6. Joint PDF of CWV and precipitation, and its
resolution/instrument dependence

As mentioned in section 4, bulk measures like CWV

and cqsat (or T̂) can represent large-scale factors that
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affect conditional instability. However, given the same

condition at large scales, one would still expect a dis-

tribution of precipitation because there are pro-

cesses at smaller scales or large-scale factors that are

unaccounted for by the bulk measures. In this section,

we examine the joint PDF of CWV and precipitation,

and its dependence on spatial resolution and in-

strumentation, to quantify the uncertainty associated

with the use of the bulk measures. This joint PDF can be

another useful metric for model diagnostics.

Figure 7a shows the joint PDF of CWV (relative to

critical) and precipitation rate P for the 70-mm cqsat bin

(second-most probable) in the tropical western Pacific

compiled using PR (2A25) precipitation at 0.258. This
cqsat bin is chosen instead of the most probable bin

(74.5mm) because for the latter, the 75-mm cap of

TMIv7.1 CWV results in the CWV value relative to

critical being capped at ;11mm, and hence the PDF of

the highest CWV is missing. The same joint PDF is

plotted in Fig. 7b on a log–log scale. Nonprecipitating

bins (0 # P , 0.05mmh21) aside, the joint PDF is

quantitatively similar across the cqsat range and ocean

basins (section S5).

For CWV below critical, the PDF in Fig. 7a drops

sharply as P increases. As the CWV increases and ap-

proaches critical, the PDF increases for all P . 0 with

long tails extending into high precipitation regime. This

occurs until the CWV reaches critical, above which the

PDF starts to decrease, with a local PDF maximum

developing at a positive P (;3mmh21) for the highest

CWV bin. From Figs. 7a and 7b (the same joint PDF on

different scales), there is not a clear power law or

FIG. 6. (left) Precipitation rate with standard error as an error bar, (center) probability of precipitation P . 0.5mmh21, and (right)

frequency density of all events (crosses) and precipitating events (circles), all conditioned onCWVusingARMsitemicrowave radiometer

CWV and precipitation data for (top) the GOAmazon site in the Amazon and for (middle) Nauru and (bottom) Manus Islands in the

tropical western Pacific. Here the statistics are calculated using CWVand precipitation data time averaged at 15-min (dark red), 1-h (red),

3-h (yellow), 6-h (green), and 24-h (blue) intervals. Conditional precipitation without an error bar indicates a standard error smaller than

the marker size.
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exponential dependence of the PDF on precipitation,

although a possible functional form will be discussed

further below.

Note that the distribution of P is asymmetric, with the

most probable value being (close to) zero even for CWV

around critical. As such, any Gaussian-like distribution

(Lin and Neelin 2003) or on-and-off precipitation model

(Muller et al. 2009; Stechmann and Neelin 2014) with

the observed conditional mean and variance would miss

much of the distribution details.

The radar-based precipitation retrievals are probably

more reliable than the passive microwave radiometer

counterpart (including TMI) since the latter is based

solely on a path-integrated signal without phase in-

formation (Chen et al. 2013). The conditional pre-

cipitation and probability of precipitation in Fig. 3

demonstrate that PR 2A25 and TMIv7.1 precipitation

are consistent in terms of the mean and distribution of

low to moderate precipitation. However, there are

quantitative discrepancies for high precipitation be-

tween the two datasets. Figure 7c shows the similar joint

PDF as in Fig. 7a, but using TMIv7.1 precipitation in-

stead. In Fig. 7c, there is a clear cutoff at P;10mmh21

and practically no events for .15, despite that the cap

set by the algorithm is 25. This is an undesirable char-

acteristic of the retrieval algorithm when applied to the

tropics (there is no sign of a cutoff in the extratropics;

not shown). Besides the cutoff, the joint PDFs for P ,
10mmh21 are similar for PR and TMIv7.1, with minor

quantitative differences, for example, the local PDF

maximum at high CWV occurs at higher precipitation

for TMIv7.1. Thus, we shall not emphasize the distri-

bution of precipitation from TMIv7.1 precipitation,

except for using it as an aid to study its dependence on

spatial resolution.

Figure 8 shows the joint PDF of CWV (relative to

critical) and P compiled at different spatial resolutions

(details in caption). The two panels for 0.258 show the

same joint PDFs as in Figs. 7a and 7c, but with a different

CWV bin width.

In terms of the general features, the joint PDFs

in Fig. 8 exhibit clear asymmetries between the low

CWV–low precipitation regime and regime near critical.

However, in the vicinity of critical (roughly63mm), the

joint PDFs are roughly symmetric with respect to CWV,

consistent with Figs. 2d and 2h. As CWV increases, the

fraction of nonprecipitating events decreases, as in-

dicated by the conditional probability of precipitation

(orange dots; P. 0) and the bands at the bottom for the

top three panels (PDFs for 0 # P , 0.05mmh21). This

and the extension of PDF into high precipitation around

critical result in the sharp increase in the condi-

tional mean (blue solid line), median (white solid), and

variance (blue dashed) of precipitation. These three

conditional statistics, when calculated by excluding

nonprecipitating pixels, would still show a sharp pickup

around critical with slightly higher values for CWV be-

low (not shown). Both the precipitation distribution for

P . 0 and its contrast to nonprecipitating events (i.e.,

P. 0 versus P5 0) contribute to the overall variance of

precipitation (Stechmann and Neelin 2011).

In addition to the differences of PR and TMIv7.1

shown in Fig. 7, the conditional probability for PR at

0.258 in Fig. 8 is noticeably higher than its TMIv7.1

counterpart for CWV lower than critical, partly because

of the differences in instrument sensitivity and native

FIG. 7. (a) Joint PDF of CWV relative to critical and precipitation rate P for the 70-mm cqsat bin in the tropical western Pacific compiled

using TMIv7.1 CWV, Reanalysis-2 temperature, and PR 2A25 precipitation at 0.258 by treating CWV and P as continuous variables with

bin width 3mm, and 0.1mmh21 (0.05 mm h21 for lowest bin), respectively. (b) As in (a), but on a log–log scale. (c) As in (a), but using

TMIv7.1 precipitation (0.258). The colors indicate the values of CWV relative to wc.
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resolution of the datasets. Recall in Fig. 3 that the con-

ditional mean and probability (with respect to a differ-

ent 1.05mmh21 threshold) from PR and TMIv7.1 are

extremely close. Despite this, the two 0.258 panels in

Fig. 8 show that the TMIv7.1 precipitation tends to un-

derestimate the variance of precipitation for CWV

around and above critical. Furthermore, the TMIv7.1

conditional median approaches mean at high CWV,

implying a more symmetric distribution of precipitation,

consistent with the corresponding PDFs in Fig. 7c.

As for the dependence on spatial resolution shown in

Fig. 8, there are more weakly precipitating events (e.g.,

0 , P , 2mmh21) in the expense of nonprecipitating

and heavily precipitating events at lower resolutions,

consistent with spatial averaging, which also results in

the conditional probability increasing and variance de-

creasing with resolution.

Figure 9 shows the precipitation contribution as a function

of CWVandP for the 70-mm cqsat bin in the tropical western

Pacific on different scales. In Fig. 9a, the areas under the

curve integrated to the mean precipitation rate for this cqsat.

While the largest contributions come from near critical,

values below or above critical still contribute substantially.

The relatively linear range inFig. 9b appears to suggest that a

P21e2bP dependence with b; 0.16 (mmh21)21 might be a

reasonable approximation formoderate tohighprecipitation

for a wide range of CWV. In both Figs. 9b and 9c, the value

of P at which the precipitation contribution is a maximum

moves toward higher P as CWV increases.

Overall, the distributions of precipitation discussed in

this section underline the importance of considering the

dependence of the precipitation PDF on where the

CWV–temperature environment is relative to critical,

rather than as a single PDF for total precipitation.

7. Summary and discussion

In this work, the convective transition statistics over

tropical oceans are compiled using satellite retrievals and

ARM site measurements to quantify the dependence of

FIG. 8. Joint PDF (color shading;mm22 h), on a log10 scale, of

CWV relative to critical and precipitation rate P for the 70-mm cqsat

bin in the tropical western Pacific compiled using TMIv7.1 CWV

and Reanalysis-2 temperature, PR 2A25 (at 5 km and 0.258) and

 
TMIv7.1 (at 0.258, 0.58, and 18) precipitation, by treating CWV and

P as continuous variables. The spacing between the joint PDF

contours is 0.3, that is, the color advances whenever the joint PDF

doubles (100.3 ;2). The corresponding precipitation rate (solid blue

line), probability of precipitation (P . 0mmh21; orange dots),

median (solid white line), and variance (dashed blue line) of pre-

cipitation, all conditionedonCWV, are also shown for reference. For

PR (at 5 km and 0.258) and TMIv7.1 (0.258), the bands at the bottom
indicate bins with 0 # P , 0.05mmh21. Note that the minimum

nonzero P for raw PR data at 5 km is ;0.11mmh21, and the

TMIv7.1 precipitation at 0.258 is discretized with units 0.1mmh21.
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precipitation on the water vapor and tropospheric tem-

perature environment and to provide an observational

baseline for comparison in using these statistics as model

diagnostics at fast (convective) time scales.

The mean tropospheric temperature profiles condi-

tioned on precipitation (P . 0.25mmh21; Fig. 4)

show vertically coherent structure, justifying the use of

bulk tropospheric temperature measures like column-

integrated saturation humidity dqsat, mass-weighted

column-averaged temperature T̂, or other layered

equivalents as the leading-order description of tem-

perature in defining the convective transition statistics.

Using these temperature measures yields quantita-

tively similar statistics, for example, those shown in

Figs. 2 and 3, including the conditional precipitation

and probability of precipitation, critical CWV wc, and

PDFs of CWV for precipitating events. However, the

PDFs of CWV for all events below critical may differ

significantly, reflecting the differences in the climatol-

ogy of these temperature measures. Because of the

narrow temperature range in the tropics, the conver-

sion among these temperature measures can be carried

out using simple linear relations found by regression.

Among the robust features of the precipitation–CWV

relation is the conditional precipitation as a function

of CWV and tropospheric temperature, which is in-

sensitive to spatial resolution (Figs. 1–3) and time av-

eraging (Fig. 6), consistent with the assertion that the

autocorrelation spatial and temporal scales of CWV and

temperature are much greater than that of precipitation.

This is particularly useful for model comparison since

model output is subject to varying spatial–temporal

resolution. Because of this insensitivity, wc and the

slope a characterizing the precipitation pickup are de-

fined through the conditional precipitation. Both wc and

a are approximately constant across ocean basins, with

the latter being insensitive to temperature over the most

common range in the tropics. The dependence of the

precipitation–CWV relation on temperature is com-

pletely characterized by wc in the sense that shifting

CWV by wc collapses the convective transition statistics

and the joint PDFs of CWV and precipitation. The de-

pendence ofwc on temperature is, however, not a simple

relation. Convective onset occurs at higher CWV but at

lower CRH with increasing temperature, as noted in

Neelin et al. (2009), and is consistent with the entraining

plume calculations by Sahany et al. (2012). At low

temperatures, which lie along the subtropicalmargin of the

domain, critical values could plausibly be approximated

by a constant CRH within a small regime. This regime

likely corresponds to the subtropical expression of

midlatitude frontal systems. For the most common be-

havior in the tropical domain, we underline that using

CRH as a variable, without separately quantifying the

water vapor–temperature dependence, would yield a

poor characterization of the statistics, as expected be-

cause of the dominance of conditional instability as a

source of tropical convective events.

Robustness of the presented statistics to instrumentation

is examined by comparing various datasets, including

precipitation radar, microwave retrievals, and in situ data.

A major source of uncertainty in the convective transition

statistics is the measurement of CWV in the presence of

precipitation. Sensitivity to CWV gap filling is quantified,

which primarily affects probability distributions at very

high CWV (above critical). Despite the differences in

FIG. 9. Precipitation-rate-weighted joint PDF of CWV relative to critical and precipitation rate P, that is, the precipitation contribution

as a function of CWV and P, for the 70-mm cqsat bin in the tropical western Pacific: (a) linear axes, (b) log–linear axes, and (c) log–log axes.

The data correspond to the joint PDF of CWV relative to critical andP in Fig. 7a, using PR 2A25 precipitation at 0.258. The colors indicate
the values of CWV relative to wc.
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precipitation distribution, especially at high rain rate, as-

sociated with different datasets as indicated by the joint

PDFs (Figs. 7, 8), both conditional precipitation and

probability of precipitation are robust to instrumentation

(including ground-based measurements of the former;

Fig. 3). This consistency likely reflects the calibration

among precipitation datasets and emphasizes the re-

liability of these statistics as observational references for

model diagnostics.

At the time scale of the individual retrieval, the ten-

dency of precipitation to coincide with high CWV has

been observed. Here, this is quantifiedmore precisely by

including the dependence on tropospheric temperature.

Specifically, CWV relative to critical (CWV 2 wc) ap-

pears to be a useful predictor of precipitation over

tropical oceans. Unlike the climatology of precipitation

or CWV that shows sharp contrast between major con-

vergence zones and regions elsewhere, the conditional

probability of precipitation given CWV exceeding crit-

ical shows only minor geographic variations (Fig. 5). In

other words, the convective transition statistics created

from individual convective events conditioned on two

bulk measures of the temperature–water vapor envi-

ronment apply reasonably universally through the

tropics even at the individual space–time point. Small

departures are noted that are presumably due to other

vertical degrees of freedom impacting convection. At

larger spatial scales and subdaily time scales, events of

high CWV relative to critical are almost certainly asso-

ciatedwith convection, leading to a potential application

of using CWV above critical as a precipitation predictor.

A connection between above-critical events and meso-

scale convective systems [Fig. 5e vs Fig. 7 of Tao and

Moncrieff (2009)] is noted, which could contribute to the

robustness of conditional precipitation to spatial reso-

lution (up to;18). A recent analysis of the GOAmazon

campaign data also points to the potential importance of

organized flow in creating the dependence of deep

convection on lower-tropospheric water vapor through

a deep layer (Schiro et al. 2018) that is seen here as the

CWV dependence of precipitation.

It is common to discuss probability distributions of

precipitation and to compare models to these (e.g.,

Figs. 8 and 13 in Klingaman et al. 2017). However, the

strong dependence of the statistics on CWV relative to

critical suggests that much of the important dynamics

depend on the temperature–water vapor environment of

the precipitating system. We extend the scope of the

precipitation–CWV relation to include the joint PDF of

CWV relative to critical and precipitation rate P. This

joint PDF is quantitatively similar in the most common

temperature range across tropical ocean basins. For low

CWV (relative to critical) the PDF drops rapidly as

P increases. As CWV increases, the PDF extends into

high-precipitation regime and develops a peak at a

nonzero P (;3mmh21) for the highest CWV (Fig. 7a),

with most of the precipitation contribution from CWV

around and above critical (mostly P , 10mmh21;

Fig. 9a).

Examination of the precipitation contributions sug-

gests that the conditional distribution of precipitation in

the PR 2A25 data can be approximated by the func-

tional form P21e2bP with b ; 0.16 (mmh21)21 for suf-

ficiently high P, for a wide range of CWV (Fig. 9b). This

would correspond to a gamma distribution at the limit of

its range of validity, except that there is a clear low-

precipitation cutoff in the precipitation contribution

that changes systematically as a function of CWV above

critical. This apparently simple observational relation-

ship in precipitation distributions as a function of CWV

relative to critical can potentially provide an interesting

target for theoretical work.

The joint PDF does exhibit dependence on spatial

averaging, with the joint PDF exhibiting more light

precipitation at the expense of nonprecipitating and

heavily precipitating events, at lower spatial resolution

(Fig. 8). This resolution dependence results in the

dependence of conditional probability of precipitation

on resolution, as in Figs. 1–3. There is not enough

observational data to compile the joint PDF at reso-

lutions most common for current models (;18) with-
out losing information for the highest CWV, but

qualitative dependence of the joint PDF on distance

above critical can be used as an auxiliary diagnos-

tic tool for the evaluation of modeled convective

parameterizations.

Overall, in addition to providing an observational

baseline with quantified robustness and resolution de-

pendence of the basic convective transition statistics for

model comparison, the ability to summarize statistics in

terms of CWV relative to critical enables additional di-

agnostics. The dependence of precipitation probability

on this quantity expands the set of related proper-

ties that exhibit common behavior for precipitation

throughout the tropics.
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